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Matching of Physical Experiments and Multibody Dynamic
Simulation for Large Deformation Problems
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CAELab, NRL, Pusan National University, Kumjung-Ku, Busan 609-735, South Korea
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Many papers have studied computer simulations of elastic bodies undergoing large deflections
and large deformations. But there have not been many attempts to check the validity of the
numerical formulations because the simulation results could not be matched without correct
input data such as material properties and damping effects. In this paper, these values are
obtained from real experiment with a high-speed camera and a data acquisition system. The
simulation results with the absolute nodal coordinate formulation (ANCF) are compared with
the results of real experiments. Two examples, a thin cantilever beam and a thin plate, are
studied to verify whether the simulation results are well matched to experimental results.
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1. Introduction

The absolute nodal coordinate formulation
(ANCF) was known a nice technique for mo-
deling and simulation of large deformation
and large displacement problems (Omar and
Shabana, 2001). In this formulation, displace-
ments of each finite element are represented rela-
tive to the global frame of reference. And the
equations of motion with this formulation gen-
erate a constant mass matrix and a constant vec-
tor of generalized gravity forces as well as zero
centrifugal and Coriolis forces (Mikkola and
Shabana, 2001). Thus. the only nonlinear term in
the equations of motion is the vector of elastic
forces.

Although this formulation is widely used for
simulations of large deformation problems with
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nice animations, no paper was written concerning
the validity of these simulations by comparing
with real experiments. Without correct input data,
such as air damping in the motion, the simulation
could not be well matched to the experimental
results. Thus, in this paper, Young's modulus E
and the damping ratio of the material used in the
simulation are obtained from the real experi-
ments. Thus, the precise validation of the ANCF
could be checked. For the author’s knowledge,
this is the first paper to compare the ANCF
formulation to real experiments. Two experi-
ments, a 2D beam deflection and a thin plate
oscillation, are carried out and compared to show
the validity of the simulations.

For the modeling of a 2D beam, many models
of elastic forces have been proposed which use a
matrix representation of the beam shape func-
tions and nodal coordinates (Craig, 1981). In this
paper, a new geometrical treatment of the abso-
lute nodal coordinates is suggested. Nodal dis-
placements and nodal slopes are employed for the
finite element formulation. The position of an
arbitrary point in the beam centerline is then
expressed as a linear combination of the nodal
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vectors with the shape functions used as coeffi-
cients. This approach is identical to the matrix
representation proposed in paper (Bathe, 1996),
but it avoids the problem of using zero values
for the shape function matrix. Strain energy, elas-
tic forces and their Jacobian matrices are calcu-
lated explicitly using tensor-like relations.(Lee,
2003) For a modeling of a thin plate, a 48 d.o.f.
plate element is developed with a two-dimen-
sional beam Xbeam plate element. The element is
the direct generalizations of 16 d.o.f. element
usually used in the finite element method. The
Kirchhoff plate theory with nonlinear strain-dis-
placement relationships was used to calculate
elastic forces as well as differential geometry of
surfaces in 3D space to calculate mid-plane defor-
mations and transverse curvatures and twist.

For the modeling of material damping and air
resistant damping, the Rayleigh’s proportional
damping was employed to account for resistance
forces. To choose the constants in the propor-
tional damping, we carried out oscillations of
a cantilever beam and a thin plate with an end-
point weight attached. Furthermore, we obtained
experimental data on the large deflections of a
2D beam and a thin plate to verify the results
generated by ANCF.

To the best of the authors’ knowledge, this
paper is the first to compare data from simula-
tions and real experiments on large deformations
of beams.

The paper is organized as follows. A des-
cription of our experimental setup for a beam is
explained in chapter 2, and the formulation and
simulation of 2D beam in chapter 3. In chapter 4,
results from the experiments and computer si-
mulations of a beam are compared. An experi-
mental setup for a plate is explained in chapter 3,
and the formulation and simulation of a plate is
in chapter 6. Results from the experiments and
computer simulations of a plate are compared in
chapter 7. and the conclusions are listed.

2. Experiments of Large
Deflection of 2D Beam

The large deflection experiments of a beam

focus on the motion of a cantilever beam with a
weight attached to the free end as presented in
Fig. 1.

2.1 Experimental setup with a high speed
camera

An accelerometer is usually used to measure
accelerations and displacements. However, the
beam used in this research is too thin to install
an accelerometer. Therefore, a high-speed camera
(REDLAKE Motion Scope type), which runs
up 1000 frames per second, is used to measure
motion.

The beam used in this test has diameter of
I mm, length of 400 mm, and are made of indus-
trial spring steel. To make it a cantilever, the

Highdy flexible beam
- -

Rigid Body

Fig. 1 Cantilever beam with attached mass

4 >

a) Location of high-speed camera

b) Lighting system ¢) Deformed beam

Fig. 2 Experimental setup
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beam is clamped tightly by a heavy jig, and is
held in place by two thick steel blocks. The
mass of the clamp is 1.74 kg, which is 1700 times
heavier then the mass of the beam. Moreover, the
clamp is secured with 4 bolts, which ensures a
cantilever beam.

To track the end point deflection, a tracking
mark was bonded at the tip. The experimental
setup was installed as shown in Fig. 2, and deflec-
tions were captured by a high-speed camera.

2.2 Free vibration to calculate Young’s
modulus and damping ratio

The stiffness of the beam (i.e.,
dulus
property,
rather than a tensile test. Because the beam is too

Young’s mo-
E), which is its most important material
is calculated by an indirect method

thin to fix at the tester, it is difficult to conduct
such a test properly. Therefore the beam’s stiff-
ness is calculated using its measured first mode
and its density. The first step is to measure the
deflection of beam ; the second is to calculate
the first frequency of the cantilever beam. The
third one calculates the stiffness using relation-
ship between the frequency and the material’s
properties. The first frequency for the beam was
obtained from the FFT of the free vibration,
which is shown in Fig. 3. From the Fig. 3, the
first frequency of the beam is obtained as 4.315
Hz.

The stiffness of the beam can be calculated
from the frequency of the first mode as seen in
(Meirovitch, 1982)

El

3(81)2\/ W (1

where A/ represents the boundary conditions of

Amplilude

Frequency (Hz)

Fig. 3 The first frequency of 1 mm beam

the beam. The stiffness can then be calculated
according to the formula found :

E= B/)‘ PAl* (2)

The calculated value £ of the | mm diameter
beam was 200 GPa. Next,
must be calculated for the simulation. To model

the damping ratio

the damping, a particular form of proportional
Rayleigh damping (Bathe, 1996) is employed and
the system damping matrix assumes the following
form :

D=aM+C (3)

which includes the mass matrix M and the
stiffness matrix C multiplied by the coefficients
defined below :

_ 20102 (G we— Gwn)
wi— wh
2{&ws— L)

wi—af

(4)
A=

which themselves depend on the frequencies
o and @z, as well as on the damping ratio §
and { for the first two modes of the system that
appear from the dynamic modal equations :

¥+ 28w+ ofx;=0.

The ratios & and & should be calculated from
the experimental data. The damping ratio of
the first mode is calculated in accordance with
the formula from reference (Meirovitch, 1982 ;
Takahashi et al., 2002).

& > 172

L= <1+

27
where &) is the logarithmic decrement. In case
of low-level damping (such as this one), when
61<€ 27, we can use the simplified expression

O
2r’

b=

The logarithmic decrement &1 can be estimated
from the experimental sequence of magnitudes
using the simple relationship below.
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o An T
5=l A, A ( ) (5)
where A, and A, are peaks of the first and nth
oscillations from the release test.

Since w: could not be captured by a release
test, an impact test was used to find @; by im-
pacting the end point. The value {; was calculated
the same method used for the first mode.

2.3 Large deformation of 2D beam

A measured mass was attached to the end of a
beam to induce large deformation and a circular
target point was glued on to track the beam’s
displacement. The mass at the end of the beam
is supported until the test begins : it is released
when the camera starts rolling.

The shape and location of the attached mass
are shown in Fig. 4, and the parameters of the
various objects used in this test are provided in
Table 1.

Since the paper target’s mass is very small, its
effect on the results of the large deformation
test is negligible. However, for the deflection
without attached mass, the target’s mass should
be considered. A photograph of a large defor-

Table 1 End-body parameters

me  Shift of mass Le

Body De§cr1p ass  center, mm mass inertia
No. Tion ————  moment
Qcx Ocy kg'mz
t
1 PAPT BT 5003 0 0 ~10"°=0
get
Attach
ached 00 0 —13 1810
mass

Fig. 4 Attached mass

mation of the beam is shown in Fig. 5. Not
surprisingly it shows much deformation due to
effect of the attached mass. The results of the
endpoint deflections are measured 336 mm, and
the natural frequency of the beam was found
1.204 Hz by using the FFT process.

The maximum displacement in the vertical di-
rection is about 86% of the beam’s length. The
shapes and chronologies of these deformations are
presented in Fig. 6.

After conducting the test of large deformation,
the beams were retested to measure their plastic
deformation. As the beams returned back to their
original positions when the attached masses are
removed, there was no plastic deformation.

Fig. 5 A beam after a test of large deformation

*—0.16 sec
04— g o +-0.24sec
i 0.32sec
'mi v -
] - . +—0.40sec
— -1004 v . —
E 150 - '
c -2004 *
o 1
g -Emji v .
=1 -3(?01
>~ v
-3501
-400+ v . - -
0 50 100 150 200 250 300 350 400

X position (mm)
Fig. 6 Shapes and chronologies of the large defor-
mations {1 mm diameter, 20 g attached mass)
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3. Finite Element Model and
Simulation of Large Deflection of
2D Beam

A brief explanation about the 2D beam si-
mulation with absolute nodal coordinate for-
mulation is explained here. More detailed deri-
vation and simulation are explained in the refer-
ence (Yoo et al., 2003).

Consider a finite element of the 2D Euler-
Bernoulli beam shown in Fig. 7. The line running
through its center is parameterized by the value
p=0, :--, [, where [ is the beam’s initial length.
The vector of the absolute nodal coordinates
contains position vectors 1o, ; (of the end points)
and the tangent slope vectors o, 7, at these points.

We use the following index notation for the
vector of the absolute nodal coordinates of the
beam :

Io e

To €2
e = ==

| 3 €3

T: €4

It can be shown that the position of an arbitrary
point on the element is given by the following
formula (Yoo et al., 2003):

{f»;i‘}l

Lol
Ty

$1 0§52 053 0iss 0}
0 510 50 5310 54

r(p)=[

r(p)
T p=1

T
T !

0 x

Fig. 7 2D beam finite element

with global shape functions defined as follows:

s=1-382+428 5=[(£—282+£Y),

E:
53=352_253’ S4=l(53—§2), 5 1)/[

For the sake of simplicity, however, we will use
slightly different notation to express the same
thing :

€1

'S

r(p) =[sil saI sal sal] €l _

Sk€s (6)
€3 k=1

€4

Thus according the use of many zero values in
our matrix computations. I represents the 2X2
identity matrix. More detailed explanations can
be found in reference (Dmitrochenko, 2002).
The equations of motion of the beam element
can be obtained from the following Lagrange

equations
ar(5e) ~(50) +(5) =(5e)

where kinetic jgnergy T is defined by the equa-
tion T=%/O. urT¥dp, U represents strain ener-
gy. And the virtual wolrk of external gravity forces
is given by 8W=/0- OorTugdp, where p is the
linear density in kg/m. These equations assume
the matrix form :

Me+Q°=Q¢ (N
where
1561 sym.
Mol 200 arT1sel
420 541 13/1 —22/1
| —13/1 —3/41 41
Qf ] pgl/2
e QL o | ugl?/12
=1 g J Sl 2
L Qf  —ugl?/12

For the modeling of an attached mass, an ele-
ment using nodal slopes as generalized coor-
dinates was used. More detail derivation can be
found in the reference (Yoo et al., 2003).
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The equations of motion formulated in this
investigation were put in the Universal Mec-
hanism (UM) program in reference (Pogorelov,
1997) to obtain the solution.

4, Comparison of Simulation and
Experiment with 2D Beam

Let us perform these calculations for the fol-
lowing case: the beam with diameter d=1 mm
and end-point mass mp=20 g of the target. With
the following values from experiments, @w;=6.7
rad/s, w.=33rad/s, A;=0.987, and §{=§&=0.
002, constants @ and £ are calculated as @=0.02
s7} B=1-107"s, respectively. One can see that the
value of # is much smaller than that of a. It is
thus natural to try to ignore the stiffness-propor-
tional part of the damping forces (Bathe, 1996)
and use the simpler damping matrix :

D=oM (8)

Numerical integration shows that the results
obtained by both models and equation (8) differ
only in 4™-5" significant digits. However, the
integration step in the case of the full damping
matrix produces a value that is 20 times smaller
because the equations of motion are much stiffer
in that case. This is why the simplified model of
damping forces (8) is used in the numerical
examples below. As can be seen in Fig. 8, the
simulation result shows a nice agreement.

!ime.i

50 1
-100 H
-150
200
-250
-300
-350

displacement. mm

Fig. 8 Comparison of experiments and simulation

5. Experiments of a Thin Plate
Oscillation

This section focuses on the large motion of a
thin plate with a weight attached to the free end.

5.1 Experimental results of a plate

The experimental setup for the plate oscillation
is shown in Fig. 9. The camera traces the target
fixed at the tip. Since the motion occurs in a three
dimensional space, the distance from the camera
to the target is changing when the deflection
occurs. Thus, the camera is installed as far as
possible to reduce this kind of visual distance
error. Since the camera is installed 10 m from the
target in the experiments, the maximum error is
less then 2.5% when the deflection is about 25
mm.

The tip position of a 400 mm X204 mm X0.4
mm plate with 400 g of attached mass is shown
in Fig. 10, and the x, v, and z positions in time
domain are shown in Fig. 11.

Side View

Sensor

/I—HET
4 Front View

Fig. 9 Experimental setup for a thin plate

Add mass

Fig. 10 Tip position in space



748 Wan-Suk Yoo, Jeong- Han Lee, Jeong-Hyun Sohn

x Direction
------ y Direction
-- 2z Direction |

50 -
0 -

<100 H
<150 4
-200 4
-250 A
-300 4
-350 4

10 1 2 3 4 5 6 7 8

Time(sec)

Displacement (mm)

Fig. 11 Tip positions in time domain

5.2 Frequency and damping ratio for the
simulation

To verify the natural frequencies and damping
ratio of the plate, the vertical displacement of
the plate with attached mass is measured, which
is shown in Fig. 12. The transformed signals by
FFT are shown in Fig. 13. The first and the
second modes are clearly shown, and the first
modal frequency is about 1.2 Hz. From this value
of frequency, the Young’s modulus E of the plate
is calculated and used for the input data in the
computer simulation.

Damping ratio of the plate is calculated by the
following formula by using 2; and the 2,41 values
in Fig. 12 and the w. value in Fig. 13.

50

400204 Plate |

-50 o
-100 A
-150 A
-200 A
-250
-300 +
-350 4

2 Displacement(mm)

10 15 20 25 30

Time(sec)

Fig. 12 Ocillation of the plate

-—— x Displacement
y Displacement
z Displacement

Amplitude(mm)
NN
o n
———

o+ e
0.5 1.0

15 20 2.5 3.0
Frequency(H z)

Fig. 13 Natural frequency of the plate

, Su-Jin Park, Oleg Dmitrochenko and Dmitri Pogorelov

1 21 1 21
- n = In
¢ WniTa Znsl Wallari—H)

Znal

where 2, and 2,4, are peaks of the first and nth
oscillations in Fig. 12.

6. Finite Element Formulation and
Simulation of a Plate Using ANCF

6.1 Finite element model of a plate

In this chapter, EOM (equations of motion) of
a thin plate are formulated with ANCF (absolute
nodal coordinate formulation) and the simula-
tions are carried out with the derived formula-
tion. With a two-dimensional beam X beam plate
element (Dmitrochenko, 2001), a 48 dof (degrees
of freedom) plate element is developed. A beam X
beam plate element is a four-node plate element,
each node has 12 dofs (degrees of freedom).
Twelve dofs consist one position vector and three
rotation vectors in a 3-dimensional space.

The Kirchhoff plate theory with nonlinear
strain—-displacement relationships was used to cal-
culate elastic forces as well as differential geome-
try of surfaces in 3D space to calculate mid-
plane deformations and transverse curvatures
and twist.

The proposed element is able to correctly re-
present large overall motion because its shape
functions contain a full set of rigid-body modes.
It also can represent large deformation due to
nonlinear strain-displacement relationships used
in this investigation.

Let us consider a plate element of size a X b X
h (length X width X thickness). The plate is re-
presented by its middle surface only, as shown in
Fig. 14.

Fig. 14 Beam-beam model of a plate
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The surface of the plate is parameterized by
values p and p.. Let O; be the origin of the
configuration space of the element. Let us ima-
gine a coordinate curve parallel to axis p{p-
beam) to define the position r{p, p») of an
arbitrary point of the plate relative to the origin
O of the inertial reference frame. Extension of
the idea of absolute nodal coordinate formula-
tion for 3D beams gives ;

O1
71

rip, po) :[§1I S2l §al §4I:| (9)

02
. T2

where §,=sx{p1, [) are Hermite shape functions
for the p-beam:

silp, D=ss(l—p, [)=1—3E242£°,
Sz(p DN=—sl—p, 1) =1{£-26+&%), P
Z) :352_253’ 5_7
( nN=1(&-&)

I is the 3X3 identity matrix, px and 7, are
absolute nodal coordinates of the p-beam (glob-
al displacements and slopes of the end points).

6.2 Mass matrix and equations of motion of
a plate
To derive dynamic equations of a plate ele-
ment, we employ Lagrange equations in a matrix
representation

arlae) ~(5e) +(5) =5 )

arb
with kinetic energy T=%/O‘f0 L rdpidps, in-
ternal strain energy U and virtual work §W=

arbd
’/o‘l Srlugdpidp, of external gravity forces ug.

Taking into account relation leads to the equa-
tions of motion

Me+Q°=Q* (10)

ard
with the constant mass matrix MI// uST
(]

Sdpidps, the surface mass density u of the plate,
the elastic Q°=0U/de and gravity Q¥=87ug

a b
generalized forces, §='£ ’/0‘ Sdpidp.. Note, that

centrifugal and Coriolis inertia forces are absent.

This is usual for the absolute nodal coordinate
formulation (Mikkola, 2001).

An explicit expression for the mass matrix can
be obtained in a block matrix form using defini-
tion of the shape function as

My M Myj; My,
M= Mz Mz Mo M,
M Ms: Mas M,

Ma M My M,

Mijll ijlZ Mij13 MijM
Mij21 Mi122 MiJ23 Mz'124
Mij3l Mij32 Mif:]S Miﬂd
MijAl Mij42 Mij43 Mz'j44

Mij:

where each block M;; is also a block matrix with
block-elements

Mijkl:

M= [[ pSusudo=1: ) [[s845,3.aP

a b -~ A
:,U/O §i§jdp1’/0- §k§zdi)2=#§?‘g§“ﬁ.

MijklI

Matrices with hats are similar to mass matrices for
beam.

156 sym
So__a 2a 44°
Y420 54 134 156

—13a —3a%® —22q 44% ) 5

Matrix § is easy to calculate explicitly, too :

§=[§11L §12L §131, §14I; RN
3_411, §42L 3_431, §441]

S—ij:f/;Side:/];g‘i?de

=/ﬂ.a§idp1/0‘b§jdpz=§?§3

the symbols with hats being well-known from the
beam elements theory. All terms in equation (10)
are obtained except elastic forces Q°, which are
the most difficult to calculate due to complexity
of the strain energy.

Following the Kirchhoff theory, the strain en-
ergy of an orthotropic plate can be decompos-
ed into longitudinal and shear deformations in
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the mid-plane, and a transverse one due to its
bending and twist :

U=U+U*

U‘=%f/<i‘.§;Dueﬁ+2

i=lj=

EuEzz)dP (11)

2 2
U= [ 2121Duks +2D8 ki )dP (12)
2 SE
The energy contains. firstly, elastic parameters of
the material of the plate: flexural rigidities Dy,
Dy and twist stiffness Dip :

D= Enhs — Ezzh
n IZ(I_Ulgl/zl) ’ 2 12 (I_Ulol/m)
Du=Du=L22"

and also an additional stiffness coefficient D=
0.5(Dvyvar + Daviz) .
pend on Young moduli £y, E» and a shear
modulus FEj;» as well as on Poisson ratios vz
and yz. The ratios satisfy the following condi-

The latter expressions de-

tion :
Envn=FEnv,

Secondly, the strain energy contains geometrical
parameters of the plate: longitudinal deforma-
tions &1, €2 and shear deformations &2=¢&;; as
well as transverse curvatures ki, Az and a twist
K12 K21.

In case of small deflections, the deformed sur-
face of the plate is defined by three scalar func-
tions : by mid-plane displacements u (x, y), v (x,
y) and by a transverse displacement w{x, y).
In that case, the mentioned deformations and
curvatures are calculated as follows :

_ou ay ou |, av
Eu= gy e T gy = <8y+8\'>
_Pw_Fw _ Fw
K= an K22 = ay?_. K12 xdy”

In our case when the plate is oriented in an
arbitrary way and specified in a parameterized
form r=r(p. p2), we should use the relation-
ships from differential geometry of surfaces. Then
we obtain expressions for deformations in the

mid-plane of the plate
I
Eij—T(I'irj_Sij) “3,)

with a Kronecker symbol §i; as well as for trans-
verse curvatures and twist

ks=rimn/|n|? (14)

with the normal vector n=r,Xr; Other nota-
tions are the derivatives

Y, S s SR
ri= ETY = Snn€mn, ;= b0 =Sinemn (15)
} h [ ur (P, o)
r=u*tu=1 p; + 1 w{pr. p2)
t 0 ‘ us(pr. po)

_ L (ou;  duy Our Qs
=3 Gt 5 2 S )

=g (13 (5 ))

More detail calculation process of longitudinal

elastic forces and transverse elastic forces are
explained in reference (Yoo et al., 2003).

7. Comparison of Simulations and
Experiments of a Thin Plate

Figure 15 presents the results for the 400 mm X
204 mm X0.4 mm plate with 400 g of attached
mass. The simulation results and experimental
results are compared in Fig. 15. As shown in
Fig. 15, x and z positions are in a good agree-
ment. After a few seconds, there are some time
lags between two results. The reason, the authors
suppose, may came from the values of Young’s
modulus and damping ratio but the differences
are not too big.

The y position shows some deviations, but it is
not a big deal if one verifies that the maximum
magnitude of the y-directional deflection is very
small.

Thus, the large deflection simulation of a beam
with ANCF formulation and the experimental
results are also in a good agreement.
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Fig. 15 Comparison of experiments and simulation

(plate, tip mass 400 gj
8. Conclusions

In this paper, experiments and simulations of a
2D cantilever beam and a thin plate with an
attached end-point weight are compared. To in-
put a precise data for the material damping and
air resistant damping in the simulation, we carri-
ed out several experiments.

Rayleigh’s proportional damping was applied
to account for resistance forces in large oscilla-
tion cases. It was found that when such resistance
forces are small, it is possible to ignore the
stiffness—proportional part of the damping forces
and focus exclusively on the mass-proportional
part.

To the best of the authors’ knowledge, this is

the first paper to compare the results of simu-
lations and experiments in this context. Thus we
have obtained some new results during this in-
vestigation.

We used the ANCF (absolute nodal coordinate
formulation) for modeling of 2D beam and sug-
gested a vector-algebra notation for the com-
ponents of the vector of the nodal coordinates.
To simulate the plate oscillation, we developed a
new 48 dof plate element from beam X beam ele-
ment. The comparison of simulation to experi-
ment with a thin plate oscillation also showed a
nice agreement.
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